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A molecular dynamics system of a two dimensional immiscible binary mixture with a first order chemical
reaction that changes a particle from one of the species to the other, is set up, in close analogy to the Monte
Carlo investigation of a similar system on a square lattice by S. Glotzer er al. [Phys. Rev. Lett. 72, 4110
(1994)]. In contrast to their investigation we do not find any labyrinthlike domain formation at the steady states
and no direct equality between the way in that the system scales with respect to reaction rate and growth
exponent in the absence of a chemical reaction. The differences are explained by the fact that a stochastic
model misses the hydrodynamic modes that are mainly responsible for the phase separation in this system and
that the discrete lattice imposes an external field on the domains that order the steady-state domains in a

labyrinthlike structure.

PACS number(s): 82.20.Wt, 47.11.+j, 64.75.+g, 61.20.Lc

L. INTRODUCTION

The domain structures of immiscible multi-component
systems may be affected by chemical reactions between the
components. The theoretical treatments of such systems are
typically based on analysis of the time development of the
appropriate order parameter and using the Ginsburg-Landau-
Wilson equation for the local free energy functional [1]. Re-
cently, however, Glotzer, Stauffer, and Jan [2] simulated a
two dimensional (2D) binary system of particles A,B where
a homogeneous mixture of equal numbers of the two species
was quenched to decomposition. At the same time a compet-
ing first order ‘““‘chemical” reaction

A=B (1

exchanged the identity of the two components in a first order
reaction, i.e., independently of the dynamics of the order
parameter, which in this case is the local particle fraction of
one of the components in the subdomains. The two compet-
ing processes, a slow domain ordering and a fast first order
reaction that destroys the domain structure, created a steady-
state pattern formation of domains. The simulations were
performed for particles on square lattices by the Monte Carlo
technique (MC) extended with a temperature independent
probability p, of converting A to B and vice versa. The main
findings of the investigation were that the systems ended in a
steady-state labyrinthlike domain formation with a mean do-
main size that scales with the reaction rate to a power s,
which equals the domain growth exponent « in the absence
of chemical reactions.

The growth exponent for decompositions in 2D has been
the subject of heavy theoretical as well as computer experi-
mental investigations. In the classification scheme, set up by
Hohenberg and Halperin [3] the stochastic 2D system with-
out a chemical reaction corresponds to the model B (con-
served order parameter and without hydrodynamics). In this
case one often observes a growth exponent a= 1/4 [4]. Other
stochastic dynamics simulations, of the Ising model [5], as
well as stochastic dynamics based on the Ginsburg-Landau
free energy functional, however, suggest an asymptotic
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growth exponent of 1/3 [6,7] in accordance with theoretical
predictions [8,9]; but with a persistent transient of 1/4. This
transient may be caused by stochastic surface diffusion in the
absence of the asymptotic Lifshitz-Slyslov mechanism [9].

The present work is in close analogy to [2], except that it
is performed in continuous space and by a molecular dynam-
ics technique (MD). The motivation for the change in
method is based on several facts. First it is noticed that the
steady-state domain formation is affected by the discreteness
of the space. For the square lattice the labyrinthlike domain
structure was obtained with the interfaces oriented along the
diagonals of the squares, which ensures minimum excess in-
terfacial energy [10]. But for a continuous space no such
“external” anisotropic field can compete with the domain
formation. A second reason for investigating a nonequilib-
rium system with chemical reaction is that the stochastic
Monte Carlo technique gives results that differ from the cor-
responding results obtained by the deterministic molecular
dynamics technique [11]. This fact is generally ignored in the
literature, which is not surprising since when it comes to
establishing equilibrium properties both methods scan the
phase space correctly. However, non-equilibrium dynamics
might often be dominated by hydrodynamic modes and these
cooperative modes are not simulated in a typical MC simu-
lation, which consists of single particle moves. For this rea-
son the MC trajectories do not represent the dynamical evo-
lution in systems with hydrodynamics. A simple critical
quench of a binary mixture to spinodal decomposition dem-
onstrates this fact by giving a different growth exponent «
by using MC and MD, respectively [11]. Whereas the sto-
chastic MC decomposes slowly and asymptotically with an
exponent «= 1/3, [12] the MD decomposition is much faster
with an exponent that starts by 1/2, but crosses over to 2/3
[11,12], in accordance with a recent free energy functional
investigation [13,14]. Extending the deterministic MD sys-
tem by a chemical reaction still allows for hydrodynamic
modes, which, however, now are coupled with the chemical
reaction in a nondeterministic way.

This paper is structured in the following way. In Sec. II
the nontrivial procedure of setting up a chemical reaction in
a MD system of interacting (simple) particles is presented.
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Section III gives the result for a system of two dimensional
particles with competing phase separation and chemical re-
action, and the controversies between MC and MD are dis-
cussed in Sec. IV.

II. MOLECULAR DYNAMICS WITH CHEMICAL
REACTIONS

The dynamics of N classical particles will in general be
chaotic and thus it has little meaning to concentrate the nu-
merical effort on an accurate calculation of the analytic tra-
jectories of the individual particles. The trajectories numeri-
cally obtained will deviate exponentially from the exact
analytic solution. Instead of trying to determine the trajecto-
ries one has to concentrate on maintaining the right global
behavior of the dynamic operator in the phase space. Both
quantum dynamics as well as classical dynamics are time
reversible and the propagation in the phase space is symplec-
tic, i.e., area preserving of the phase space. An example of
such a dynamical operator is the so-called Verlet algorithm
or leap-frog algorithm, that is the simplest example of a
discrete classical mechanical time operator in the phase
space that ensures both time reversibility and symplectic
mapping [15].

Discrete dynamics imply that the particles are exposed to
discrete forces. This fact is generally ignored in the debate
about MD and many authors have been concerned about the
discontinuity of the force field by truncating the potential of
the forces at a certain range of interaction. However, under
the total time simulation all the particles are in each step
exposed to discontinuities of the force field due to the finite
order of the algorithm [16]. A MD system of particles will
typically exhibit the biggest force gradients at (high energy)
particle collisions. By introducing first order reactions (i.e.,
proportional to the overall concentration of the species and
independent of the local environment where the reaction
takes place) we introduce force gradients on the particles at
the place of reaction. Thus we need guidance for the stability
of MD when we introduce chemical reactions in the system,
and as a guide for the choice of possible chemical reactions
one should not introduce bigger force gradients that those to
which the particles are already exposed, from time to time,
during high energy particle collisions.

The qualitative feature of the system we want to set up is
is a competition between a fast first order chemical reaction,
which destroys the phase separation, and a slow phase sepa-
ration, ensured by slow hydrodynamic modes. For this rea-
son we chose a kinetics with a low energy barrier between
A and B, in close analogy with [2]. The first order kinetics
will be given by (1). With a rate of reaction that is propor-
tional to exchange probability p,, an A particle is
spontaneously changed to a B particle. If we apply the
rule of thumb that this change should not impose new force
gradients that are bigger than those to which the particles
already can be exposed in their next discrete step, we must,
for systems with spontaneous exchanges, necessarily choose
A and B particles with the same strong repulsive short range
potential that determines the (high energy) particle collisions.
A simple candidate of such a system is a mixture of labeled
(A and B) Lennard-Jones particles where particles exchange
labels spontaneously and where there is a net loss of poten-

tial energy between particles in the fluid at the exchange.
And since we want to maintain the same excluded volumes
of the particles at the exchange this net loss of potential
energy must come from the long range attractions between
different particles with different labels. In order to obtain a
phase separation in such a system we must ensure that a
positive excess potential energy of mixing is larger than the
gain in entropy of mixing. In statistical mechanical models
of simple mixtures one obtains the excess energy of mixing
by using the fluid structure given by the radial distribution
function g(r) of pairs of particles and the resulting excess
potential energy is obtained at the density p and temperature
T as

BUexcess(p,T)=Pjvdl'g(r)5u(r) 2

from the local excess potential energy of mixing du(r) at
particle distance r

Su(r)=uyp(r)—s[usa(r)+ugp(r)] 3)

and in order to ensure a phase separation, the integrated ef-
fect of 6u(r) must dominate above the entropy gain by mix-
ing [17].

With all these facts in mind a critical quench of an immis-
cible binary mixture with a fast chemical reaction can be set
up by choosing labeled Lennard-Jones particles, but with
only short range repulsive Lennard-Jones forces between
particles with different labels. The corresponding potential is
the Weeks-Chandler-Andersen (WCA) potential [18]. Due to
the symmetry of the system an upper consolute temperature
(critical temperature) T.(x) must be for the critical particle
fraction x=0.5 (critical quench means only that the system
is quenched at this particle fraction). The kinetics is set up by
randomly choosing n A and n B particles at every time in-
terval ot and exchanging the labels, thereby ensuring first
order kinetics by the random choice and strict microscopic
(kinetic) reversibility so that the system cannot spontane-
ously break the symmetry and drive away from the critical
concentration. This system fulfills the MD requirements for
numerical stability; without the kinetics it will perform a
spinodal decomposition, and it must be the proper continious
space analog to the discrete MC system investigated in [2].

The main findings of the MC investigation [2] were that
the systems ended in a steady-state labyrinthlike domain for-
mation with domain sizes that scaled with the reaction rate or
exchange probability p, to a power s equal to the domain
growth exponent a in the absence of a chemical reaction.
Thus we need a measure of the degree of the decomposition
suitable for the present MD system. The ramified domains
shown in the next section can both be described by their
mean size, by the first peak in the structure factor, and by the
mean behavior of the radial distribution function for the in-
dividual components of the mixture. We find, however, the
mean potential energy per particle, u(#), at time ¢ to be not
only the easiest but also the most accurate quantity to moni-
tor the scaling behavior and steady-state limit of the systems,
and in fact it is also the measure used in [2].

As the system is quenched with or without kinetics, u(?)
decreases first exponentially and later algebraically. There is,
however, one obstacle to overcome using u(¢) as a measure:
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we need to know the energy of coexisting phases at equilib-
rium, u(o). [It is the total excess potential energy, (2) and
(3), and not a fraction, like u, 5 , which sets up the interfaces,
drives the decomposition, and enters into the nonlinear alge-
braic relations.] In terms of u(z), the main findings of [2]
were

(1) = u(o)|=kot™“ “4)
for spinodal decomposition without competing kinetics and
|ueq_u(oo)|zkeqpi7 ®)

where uq is the steady-state mean potential energy per par-
ticle, and the MC result then suggests that

s=a~1/4 6)

for a critical decomposition in a two dimensional space. (In
[2] the authors did not obtain the exponent a=1/3 for sto-
chastic dynamics, but the persistent transient a~1/4.)

For the corresponding MD system and in 2D, a equals
2/3 at late times [11,12] in accordance with a theoretical
investigation [13,14], so the questions that remain is whether
there is a steady state domain structure with a relation or
equality between s and «, and whether these domains per-
form a “‘self-organizing’ labyrinthlike domain structure.

III. RESULTS FOR A TWO DIMENSIONAL BINARY
MIXTURE

The system consisted of N=40 000 Lennard-Jones (LJ)
particles with periodical boundaries and at the particle den-
sity po?=0.8 and temperature 7*=k;T/e=1.0 (o and €
are length and energy parameters in the LJ potential, kp is
Boltzmann’s constant). This corresponds to a dense fluid
state, and the system was instantaneously quenched by ran-
domly selecting N, =20 000 particles and the particles were
labeled by choosing the potential between the N, and the
Ng=N— N, particles to be purely repulsive (WCA potential)
by instantaneously cutting away the attraction of the u,p
potentials. The corresponding binary mixture is immiscible
below temperature T~1.7, [17] and the solubility of solute
particles at 7*=1 is very low. For a critical quench with
N4=Njp the system separates and performs a spinodal de-
composition. The time development at constant temperature
was followed using the symplectic and time reversible
algorithm given in [19] with. a time increment £
=0.005(~ 10" "“sec). Figure 1 shows some examples of par-
ticle distributions for different quench times for the MD sys-
tem without a chemical reaction. Subphases of A and B are
created rather rapidly and after 100 000 time steps (500 time
units) the system is already divided into percolating sub-
phases [Fig. 1(a)]. The phase separation takes place by de-
creasing the length of the interfaces whereby also the mean
energy u(t) decreases. The slow spinodal decomposition was
followed 10 000 time units (2X 10° time steps). At that time
the system still contained an island of A-rich drop in the
B-rich phase [Fig Figl(c)] and the evolution in the system
was extremely slow.

According to (4) we need to know u#(%) in order to de-
termine the algebraic relaxation at late times. So the mini-

mum energy at equilibrium u(%°) was obtained in another
way by starting with a configuration of the system with pla-
nar subphases [20] and the configuration given in Fig. 1(d) is
the particle distribution after 5 10° time steps. The system
was found to equilibrate very slowly, but showed no drift in
the energy after 4 X 10° steps and the mean energy obtained
in the succeeding 1X10° time steps gave wu(®)/e
=—1.931+0.001. We can now determine « in (4) for a
system without a competing chemical reaction and as found
in [11] we obtain at late times ¢>500, an exponent aw=2/3 in
accordance with [13] and [14].

The system with both phase separation and a first order
reaction was then set up by quenching the system but at the
same time randomly selecting n A particles and n B particles
and exchanging their label every &t time steps. The steady
state was identified as the state where the energy per particle
u(t) no longer exhibited any drift but remained constant for
averages over long subsequent time intervals. The mean en-
ergy per particle, u.y, in the steady state was then obtained
from these subsequent time intervals. For an exchange of 20
of the 20 000 A particles with 20 B particles per time steps
the steady state was reached within a few thousand time
steps whereas the system is much more sluggish for smaller
exchange rates. Figure 2 shows different particle configura-
tions by the end of the simulations for different exchange
rates n. As can be seen from Fig. 2(a) the system for
n=20 consists of very small clusters; but as the exchange
rate is decreased a domain separation takes place.

The subdomains in the steady states, however, are not
compact, but infected by smaller domains of the other spe-
cies as can be seen in Fig. 2(d). Inspection of subsequent
distributions of particles shows that the steady-state clusters
grow but at the same time are affected by the kinetics so that
at a certain point they separate into smaller and more com-
pact subclusters: These events are associated with a rapid
increase in u(t). The upper part of Fig. 3 in large scale
shows this behavior. It gives the energy u(¢) in the last 500
time units of the simulation for the system with the smallest
exchange rate n=0.1, corresponding to only two particles
out of 40 000 exchanging labels every 10 time steps. Two
(main) frequencies in the energy variations can be identified.
One fast frequency is due to a sum of contributions from
exchange between potential and kinetic energy, from the
coupling with the thermostat, and from the direct (local) im-
pact of the chemical reaction. The other long time change in
u(t) is due to the infection of the large clusters by the (bulk)
chemical reaction by which they finally fall apart into more
compact subclusters corresponding to a less separated state
with a higher potential energy.

The lower part of in Fig. 3 compares the same steady-
state energy evolution as shown above, with the correspond-
ing evolution in the system without a chemical reaction and
for the time interval where its mean domain size is of the
same order of magnitude as the steady states with n=0.1
[Fig 2(d)]. This happens for times in the interval [500,1000]
and the lower curve shows this energy evolution together
with the dashed curve (4): f(2)=ko(t) 2P+ u(»)+a,
shifted by a for illustrative reasons. Inspection of this curve
and a log-log plot [12] shows that the system without a
chemical reaction reaches the asymptotic regime with a
growth exponent equal to 2/3 within this time interval. The
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(@) time = 500

©) time = 10 000

(b) time = 2500

(d) equilibrium

FIG. 1. Domain evolution in the system without a chemical reaction. For clarity the figures only show the distribution of A particles.

potential energy is not constant due to the exchange between
kinetic and potential energy. In addition to this we have in-
troduced a fast chemical reaction that causes new force and
energy gradients. But as can be estimated from the width of
the two curves in the lower part of Fig. 3, which are equal,
the gradients due to the chemical reaction are smaller or of
the same order as already present in the MD system due to
the way the system was deliberately set up. For smaller ex-
change rates than n=0.1 the system of 40 000 particles
shows a final size effect, which, among other things, is de-
scribed by the mean domain size being bigger or of the order
of half the system size. Returning to Figs. 2(a)-2(d) one can
see that the systems show no sign of a labyrinthlike domain
structure, which in the case of the MC simulation must be
caused by the extra force field coming from the discrete
space, which favors interfaces in the direction of the diago-
nals [10].

The MD chemical reaction technique introduced in the
present paper can be used to simulate more complex chemi-
cal reactions than given by the unimolecular elementary re-

action (1). We have investigated a series of different chemi-
cal reactions. Also for a bimolecular reaction, where the
color shift is performed at a molecular collision,

A+A=A+B=B+B, (7

we obtained a steady state with the same kind of ramified
domain structures as shown in Fig. 2, and in no case did we
observe laminarlike domain structures. (The collision intro-
duced color shift was performed by changing the color of
one of the components in the pair at collision.)

The main finding in [2] was the equality between « and
s obtained from (4) and (5). We have obtained
ln|ueq(n)—u(00)| for n in the interval [0.1,20], correspond-
ing to two decades on a logarithmic scale. The steady-state
mean energy was obtained as described above and the points
shown in Fig. 4 are for averages over time intervals of
200 000 except for n=0.1 and 0.2 where we needed longer
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(@ n=20

(c) n=0.2

I

(d) n=0.1

FIG. 2. The same system as shown in Fig. 1 and started from the same fluid state, but now with the fast chemical reaction included. The
A-rich “domains” for n =20 exchanges of A particles to B particles and vice versa per time step (a) are very small and the phase separation
is suppressed. Both reactions are present only for a significantly smaller exchange rate (b)—(d).

runs. The uncertainties (logarithmic scale) are estimated to
be smaller or of the same size as the marks for the points in
the figure. As can be seen there is no simple dependence of
1n|ueq(n) —u(0)| on the rate constant of the competing reac-
tion. Also shown in the figure is a straight line with the slope
of s=2/3, which is the slope for which s equals the growth
exponent a in the MD system without a chemical reaction
[11,12].

IV. DISCUSSION

The differences between the MC result and the present
MD result for phase separation dynamics with chemical re-
actions demand an explanation. Although it is not simple to
compare the sizes of a MC discrete lattice system of 3162
particles with nearest neighbor interaction and a MD system
of 40 000 particles, inspection of the domain sizes in the two

systems reveals that the present simulations cover steady-
state domain sizes over at least the same reaction rate inter-
vals as in [2]. So we believe that both results are not affected
by finite size effects and are correct and describe the dynam-
ics, but within different models. In the classification scheme
in [3] the MC system corresponds to model B and the MD
system corresponds to model H for systems with hydrody-
namics and conserved order parameter.

The qualitative and important difference between the two
models is, as mentioned, that pure MD, in contrast to MC,
contains the hydrodynamic modes. However, with a chemi-
cal interaction of the kind introduced here we suppress these
modes—not completely if the reaction rate is small, but the
modes must be suppressed for high reaction rates and we
shall expect a growth exponent of a=1/4-1/3 [11,12]. We
notice that s in fact takes the value 0.23 for n=1 in accor-
dance with the MC result [2]. First for this exchange rate the
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FIG. 3. The upper figure shows the potential energy evolution
u(t) in units of €, during the last 10° time steps for the most steady-
state phase separated system with n= 0.1 shown in Fig. 2(d). In the
lower figure the same energy evolution is compared with the corre-
sponding evolution in the system without a chemical reaction, and
the dashed line gives its asymptotic algebraic behavior with an ex-
ponent equal to 2/3 (shifted by a small amount for illustrative rea-
sons).

domains contain many particles, as can be seen from Fig.
2(b), so the state can qualitatively be characterized as a state
where both processes take place: the fast chemical reaction
and the slow phase separation. As the reaction rate is low-
ered, the hydrodynamic modes can persist (locally) until an
exchange of labels destroys the velocity field. This may be
understood from the following simple fact: The hydrody-
namic modes show up in the velocity autocorrelation func-
tion ¥ (7) of velocities at time ¢ and ¢+ 7 [21]:

(vi(t+7)v(1))
<Vi(t)2> ’

where the angular brackets denote the average over the ve-
locities v; of the particles in the system. In real fluids, as in
MD fluids, the hydrodynamic modes cause a long time cor-
relation of the velocities, which results in a slow algebraic
decaying autocorrelation function W(7) [22]. On the other
hand stochastic dynamics, like Langevin dynamics and MC,
miss these modes and as a result of that their autocorrelation
functions decay rapidly and exponentially to zero. When a
reaction takes place we have carefully ensured that we do not
introduce bigger force gradients than are already present
within the pure MD system; but we have not ensured that

W(r)= (®)

the force has a certain direction. In fact it is random and thus
in a random way instantaneously changes the direction of the
velocity of the reacting particle and thereby its velocity au-
tocorrelation function accordingly to (8). So if there exists an
equality in the growth exponents s and « we should in fact
expect this continuous crossover in the MD system from a
value of s from about 1/4—1/3 to 2/3 as the exchange rate is
lowered. The fact that we only see part of this crossover is
explained by the fact that we need even smaller exchange
rates to recover 2/3. This is, however, not possible at the
moment, since it also requires a significantly bigger system
and longer runs. In [12] we have tested this hypothesis in a
simple way by quenching the binary mixture, without a
chemical reaction, but by adding a random force field from
time to time to the MD force field. As the time interval of
this disturbance was increased we observed, as expected, a
continuous crossover from a growth exponent a=~0.33 to
0.66.

How a real system would behave remains speculative. We
believe, however, that the present model describes qualita-
tively the dynamics of a system with phase separation and a
first order reversible chemical reaction. The argument is that
a chemical reaction is associated with breaking and reestab-
lishing covalent bonds. These bonds have a short ranged and
random orientation, given by the local and strong anisotropic
force field, and thus have exactly the same qualitative impact
on the direction of the velocities of the reacting species and
their nearest neighbors as changing the color in the MD sys-
tem.

The purpose of this investigation was to set up an open
MD system with a fast chemical reaction in order to deter-
mine its steady-state behavior. For this reason we chose a
system with a spontaneous exchange of particles between the
two chemical states. This corresponds to a small transition
energy barrier between the two states. On the other hand this
instantaneous change is only a technical detail and it would
be easy to simulate a first order, unimolecular chemical re-
action in a more smooth way by charging up the differences
between the intermolecular force field before, at, and after
the reaction during many time steps. This should be the case

3 T T T T T

25 | : slope equal to 2/3 .~

2| . n

T 15t 4
e

— 1+ -
o
<
=1

< 0.5 - -

0
In(n)

FIG. 4. Log-log plot of the steady-state excess energy,
U oq— u(), in units of € against the exchange rate n. The change in
excess energy between the two smallest exchange rates (the two
first points in the figure) is 0.33, and far from a slope of 2/3 given
by the dashed line.
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if one wants to explain quantitatively a specific experiment
with a given transition state energy barrier.

The fast chemical reaction was taken to be unimolecular
in order to compare with the investigation [2]. This is prob-
ably unrealistic for many real experiments where the elemen-
tary chemical reactions are of higher order. It is, however,
straightforward to extend the present MD model to simulate,
e.g., a bimolecular reaction by changing the labels with a
conditional probability for pairs of nearest neighbors. Doing

so we obtained the same qualitative behavior of the steady
state with ramified domain structures as by the unimolecular
first order reaction (1).
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